0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 435 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 134 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 3508 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 409 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^2)
quot(0, s(y), s(z)) → 0
quot(s(x), s(y), z) → quot(x, y, z)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z)))
quot(0, s(y), s(z)) → 0 [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]
plus(0, y) → y [1]
plus(s(x), y) → s(plus(x, y)) [1]
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z))) [1]
quot(0, s(y), s(z)) → 0 [1]
quot(s(x), s(y), z) → quot(x, y, z) [1]
plus(0, y) → y [1]
plus(s(x), y) → s(plus(x, y)) [1]
quot(x, 0, s(z)) → s(quot(x, plus(z, s(0)), s(z))) [1]
quot :: 0:s → 0:s → 0:s → 0:s 0 :: 0:s s :: 0:s → 0:s plus :: 0:s → 0:s → 0:s |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
quot
plus
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
plus(z', z'') -{ 1 }→ y :|: z'' = y, y >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0
quot(z', z'', z1) -{ 1 }→ quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y
quot(z', z'', z1) -{ 1 }→ 0 :|: z >= 0, y >= 0, z'' = 1 + y, z1 = 1 + z, z' = 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(x, 1 + plus(x', 1 + 0), 1 + (1 + x')) :|: z'' = 0, z' = x, x >= 0, x' >= 0, z1 = 1 + (1 + x')
quot(z', z'', z1) -{ 2 }→ 1 + quot(x, 1 + 0, 1 + 0) :|: z'' = 0, z' = x, z1 = 1 + 0, x >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0
{ plus } { quot } |
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0
plus: runtime: ?, size: O(n1) [z' + z''] |
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 }→ 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0
plus: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] |
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 + z1 }→ 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= 1 * (z1 - 2) + 1 * (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0
plus: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] |
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 + z1 }→ 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= 1 * (z1 - 2) + 1 * (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0
plus: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] quot: runtime: ?, size: O(n1) [2 + 2·z'] |
plus(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
plus(z', z'') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
quot(z', z'', z1) -{ 1 }→ quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0
quot(z', z'', z1) -{ 1 }→ 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0
quot(z', z'', z1) -{ 1 + z1 }→ 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= 1 * (z1 - 2) + 1 * (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0
quot(z', z'', z1) -{ 2 }→ 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0
plus: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] quot: runtime: O(n2) [5 + 5·z' + z'·z1 + z1], size: O(n1) [2 + 2·z'] |